Search results

Search for "3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA)" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • organic molecule 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) from the supporting Cu(111) surface by Raman and fluorescence (FL) spectroscopy. The Raman fingerprint-type spectrum of PTCDA served as a monitor for the presence of molecules on the surface. Several broad and weak FL lines between
  • system of this work, namely, 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on a layer of hBN on Cu(111). Here, we consider an S1 excitation which involves mainly a HOMO/LUMO (highest occupied and lowest unoccupied molecular orbital) electronic excitation. Rapid CT leads to a delocalization of the
  • -perylene tetracarboxylic dianhydride (PTCDA); Raman spectroscopy; Introduction In recent years, two-dimensional materials (2DMs) have been established as a highly interesting field of studies, both in regard to their fundamental physical properties as well as their potential for technical applications [1
PDF
Album
Full Research Paper
Published 03 Nov 2020

PTCDA adsorption on CaF2 thin films

  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1615–1622, doi:10.3762/bjnano.11.144

Graphical Abstract
  • functionality. Here, the molecular properties of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) adsorbed on insulating CaF2 thin films that were grown on Si(111) surfaces are studied. Scanning tunnelling microscopy is used to compare the properties of PTCDA molecules adsorbed on a partly CaF1-covered Si
  • on CaF2(111) of nearly flat-lying PTCDA molecules with two oxygen atoms displaced towards calcium surface ions. This geometry is in agreement with the experimental observations. Keywords: calcium difluoride; decoupling; insulating thin film; 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA
  • of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on metal [6][7][8][9][10][11][12], semiconductor [13], and insulator surfaces [14][15][16][17][18][19], as well as the deposition on conducting surfaces covered by insulating thin films [20][21][22][23][24] or two-dimensional materials [25]. It
PDF
Album
Full Research Paper
Published 26 Oct 2020

Adsorption of iron tetraphenylporphyrin on (111) surfaces of coinage metals: a density functional theory study

  • Hao Tang,
  • Nathalie Tarrat,
  • Véronique Langlais and
  • Yongfeng Wang

Beilstein J. Nanotechnol. 2017, 8, 2484–2491, doi:10.3762/bjnano.8.248

Graphical Abstract
  • peripheral phenyl rings acting as spacer that mitigate the coupling between the central macrocycle and the surface. X-ray standing wave measurements (XSW) on 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) and on diindoperylene (DIP) on Au(111) report distances slightly lower (3.27 Å and 3.22 Å
PDF
Album
Full Research Paper
Published 23 Nov 2017

The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope

  • Christian Wagner,
  • Norman Fournier,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 202–209, doi:10.3762/bjnano.5.22

Graphical Abstract
  • -molecule manipulation has particularly promising potential to yield new insights. We recently reported experiments, in which 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules were lifted with a qPlus-sensor and analyzed these experiments by using force-field simulations. Irrespective of the
  • experimental data points is related to the sliding of the molecule across the surface. Keywords: atomic force microscopy (AFM); force-field model; 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA); qPlus; single-molecule manipulation; Introduction The problem of the adsorption of organic molecules
  • made on 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules [6] (cf. inset of Figure 1a). This system is considered to be an archetypal case of a functional organic adsorbate [1]. PTCDA interacts with surfaces via two distinct functionalities: the π-conjugated perylene core and the
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2014

A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

  • Manfred Lange,
  • Dennis van Vörden and
  • Rolf Möller

Beilstein J. Nanotechnol. 2012, 3, 207–212, doi:10.3762/bjnano.3.23

Graphical Abstract
  • to its large spring constant of about 9000 N/m. The force-spectroscopy measurements were performed on the organic molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) grown on a Ag/Si(111) √3 × √3 surface. PTCDA has been extensively studied as a candidate for organic devices [10][11][12][13
PDF
Album
Full Research Paper
Published 08 Mar 2012

Intermolecular vs molecule–substrate interactions: A combined STM and theoretical study of supramolecular phases on graphene/Ru(0001)

  • Michael Roos,
  • Benedikt Uhl,
  • Daniela Künzel,
  • Harry E. Hoster,
  • Axel Groß and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 365–373, doi:10.3762/bjnano.2.42

Graphical Abstract
  • -(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) and (ii) 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA) on graphene/Ru(0001). For PTCDA adsorption, a 2D adlayer phase was formed, which extended over large areas, while for 3,3'-BTP adsorption linear or ring like structures were formed, which
  • different intermolecular interactions, namely (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4-(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) [24][25] and (ii) 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on graphene/Ru(0001). Schematic representations and space filling models of these molecules are
PDF
Album
Full Research Paper
Published 12 Jul 2011
Other Beilstein-Institut Open Science Activities